
Perl Tools for Automating Satellite Ground Systems

David McLean, Therese Haar, and James McDonald

Honeywell
7515 Mission Drive

Lanham, Md. 20706

Funded under contract with NASA / GSFC / Information Systems Center

Abstract

The freeware scripting language Perl offers many opportunities for automating satellite ground
systems for new satellites as well as older, in situ systems. This paper describes a toolkit that has

evolved from of the experiences gained by using Perl to automate the ground system for the

Compton Gamma Ray Observatory (CGRO) and for automating some of the elements in the
Earth Observing System Data and Operations System (EDOS) ground system at Goddard Space

Flight Center (GSFC). CGRO is an older ground system that was forced to automate because of

fund cuts. Three 8 hour shifts were cut back to one 8 hour shift, 7 days per week. EDOS
supports a new mission called Terra, launched December 1999 that requires distribution and

tracking of mission-critical reports throughout the world. Both of these ground systems use Perl

scripts to process data and display it on the Internet as well as scripts to coordinate many of the
other systems that make these ground systems work as a coherent whole. Another task called

Automated Multimodal Trend Analysis System (AMTAS) is looking at technology for isolation

and recovery of spacecraft problems. This effort has led to prototypes that seek to evaluate
various tools and technology that meet at least some of the AMTAS goals. The tools,

experiences, and lessons learned by implementing these systems are described here.

Compton Gamma Ray Observatory Ground System Automation

CGRO was launched on April 5 1991 aboard the Space Shuttle Atlantis. Its principal mission is
to study the gamma ray sources throughout the universe. After the primary mission was

accomplished the spacecraft was reboosted into a higher orbit to extend its mission life by at least
another 10 years. However, funding cuts required the ground system staff be cut from three 8-

hour shifts to one 8-hour shift so ground system automation was an absolute requirement.

Many of the Perl DataTools scripts have evolved from the experience of looking for automation

tools [1] and automating the CGRO ground system, now known as ROBOTT (Reduced
Operations By Optimizing Tasks and Technologies) [2]. ROBO'FI" uses Perl scripts that

coordinate the sequences of activities required to support real-time Tracking and Data Relay
Satellite System (TDRSS) activities for CGRO, called pass activities, as well as pre and post pass

activities. Schedule automation is very important to CGRO because all of its data must be down-

linked in real-time and therefore it requires all the TDRSS contact time that is possible. These
pre pass activities start by executing Perl scripts that generate a first cut TDRSS schedule for
CGRO. Then, once a day, scripts download the confirmed TDRSS schedule from the Command

Management System. Next, a script pulls time and pass parameter information from the

confirmed TDRSS schedule and creates a CRON table to launch a day's worth of pass activities
at the appropriate times. The CRON table must be set up with start times adjusted by 2 minutes
before the actual TDRSS contact so the API in Perl moduJe DateCalc.pm was used to make these

adjustments. When the CRON scripts are launched, they start software that monitors and controls

(Genie)[4]. Whenanomaliesare identiliedduringpassoperations,Perlscriptssendpages
througha firewallto a RO[.Mphonesystemto alertsystemengineers.At theendof eachpass
engineeringdata is also sentthroughthe tircwall to a WWW sitewhereit is availablefor
engineersandscientists.OtherPerlscriptsgeneratetheHTML thatloadsa graphictimeline
appletthatdisplaysaday'sworthof TDRSS passes. Perl scripts also generate some HTML that
documents the scripts that make up ROBOTT.

The ROBOTT experience has inspired the PerJ DataTools effort by making us consider what

tools would really be more appropriate if we had to do it all over again. The data moving tools
and the numeric paging scripts are truly portable and can be used tbr any application with similar

needs. However there are many other mission specific scripts that could have been made more

flexible and extensible by the use of a toolkit that is more database like. The Perl DataTools

counting and database scripts were created with this kind of flexibility in mind andshould make
future ground system automation easier to maintain and to port to similar applications.

The GenSAA/Genie tools are written in C++ and use the CLIPS rule-based system to represent

constraint knowledge. This diversity oflanguages requires the maintainer of the complete ground
system to know all these languages and technology to modify the system in various ways. It

would be much simpler to keep as much of the code as possible in Per{ because it is a much
higher level language than C++. We estimate the code ratio/'or Perl vs. C++ is about 1 to 10 to

do similar things. Also, CLIPS is a huge system and rule firing is difficult to control-- There

must be rules to control rule firing. Our experience has shown that a simple backward chaining
system achieves the same result and is much easier to maintain. This has been the motivation

behind the Perl Inference Engine (PIE) and A Plan Executor (APE) [5].

The Earth Science Enterprise Application

NASA's Earth Observing System (EOS), formerly known as NASA's Mission to Planet Earth,

objective is to study the Earth via a series of polar-orbiting and low inclination satellites over the
next two decades. The data systems supporting the capture and processing of telemetry, from a

collection of EOS satellites, is supported through NASA's EOS Data Information System

(EOSDIS). The EOS Data and Operations System (EDOS) element is responsible for the data
capture and initial processing of the raw telemetry known as level zero processing as well as the

transfer of command data blocks to the spacecraft.

The first spacecraft to be supported by the Earth Science Ground System is an international

satellite named Terra, formerly referred to by the name AM-I. The Terra satellite was sent into a
polar orbit via an Atlas IIAS launch vehicle, from Vandenberg AFB. California December 1999.

The EOS Terra Spacecraft is a joint project between the United States, Japan, and Canada. There
are a total of five instruments on the Terra Spacecraft, three provided by the United States, one

from Japan, and one from Canada. The Terra Satellite telemetry' is based on the Consultative

Committee for Space Data Systems recommended format. Each instrument has a defined group
of unique Application Process Identification (APID) numbers that define each instrument team of

CCSDS telemetry packets. EDOS receives and processes the raw telemetry simultaneousl,v on
three return link channels and transfers the {brward link command data to the Terra Spacecra(t.

Two return links support the low rate data, one kbps to 5t2 kbps, and one high rate return link
supports 150 mbps.

Perl Report Generators fl_r tile Earth Science Enterprise

Access to telemetry status is critical to the internationally based instrument teams and the

EOSDIS ground system. End-to-end ground system testing in support ofpre-launch, launch, and

post-launch activities increasingly demonstrated a need to provide access to data processed and
captured by EDOS. Selective data points and files within EDOS are transt'erred to a remote

server for processing and display. To meet the needs of the international cross-functional team,
the concept of using WWW-based Iechnology to facilitate automated dynamic reports was

proposed. The selection of tools, such as Perl and the Apache server software, was based on their

proven capabilities for automation of the CGRO ground system. Some of the valuable

information provided by these Perl-gencrated reports are:

• Real-Time Data Files by APID including Spacecraft Start and Stop Time.

• Expedited Data Files by APID including Spacecraft Start and Stop Time.

• Product Data Sets Delivery Files including Spacecraft Start and Stop Time.

• Real-Time Data File Customer Delivery Report including product delivery completion
time.

• Expedited Data Sets Product Customer Delivery Report including product delivew

completion time.
• A Product Data Sets Customer Delivery Report including delivew completion time.

• Data Product Quality Report including telemetry gap information.

• Spacecraft Contact Summary Report.

• Performance Summary Report

These dynamic reports have provided an invaluable method for tracking telemetry through the

production processing stages of EDOS. For example, it provides many EOSDIS team members a
method of verifying receipt of telemetry into rate buffer files, production data processing status,

and data quality. The data quality information provided in the EDOS detail production data sets
provides the ground system with an immediate view of satellite data quality captured and

processed. This has saved valuable time in defining and addressing unexpected quality, data
results by management, flight operations, the spacecraft team, EDOS, the instrument teams, and
the Distributed Active Archive Center. In addition, the EOSDIS ground system has benefited

from cost savings due to the rapid prototyping and implementation of the Perl generated

accounting reports. The cost saving was realized through the removal of EOSDIS accounting
requirements on EDOS and the System Monitoring and Coordination Center because data
accountability for the Distributed Active Archive Center is centered on this WWW-based
solution.

EDOS Database Access Using Perl

Unlike the CGRO ground system. EDOS has not yet evolved into a fully automated system.

However, as EDOS moves toward this goal through the automation of data access and publishing.
EDOS stores data and status information in an Oracle database that is protected by a firewall.

Perl automation scripts were written to access the desired information and put it irto the database
where the information can be stored and manipulated prior to its presentation to managers and

other customers through a WWW interlace. Perl provides an excellent API to databases known

as DBI. This interlace was used to accept SQL queries embedded within Perl scripts to access
data in the database. Direct access of the data by the script offers many advantages because the

data can be formatted and massaged by the script (a task that Perl is very well suited to) before it

is put into the database or displayed on a report. The database update scripts are executed

automaticallythroughCRON and the displayscriptsarc executedas a (_'onlnlonGateway
Interface(CGI)in responsetoWWWfi)rmproccssmg-Thebottomlineis thatautomationof the
updateanddisplayof databaseinfi)mmtionontheWWWcanbeachievedeasily,efficiently,and
inexpensivelyusingPerl.

NearReal-TimeEDOSDisplays

A majorgoalof EDOSmanagementis to allow remoteaccessto statisticalinformationthat is
presentedin a concisetbrm. The power of Perl to access, search, and manipulate data leads to
simple and easy to maintain report generators, including HTML generators. Perl modules such as

GIFgraph.pm, a plotting module, allow easy display of graphical data the WWW. A near real-
time status display was prototyped to provide mission critical statistics on lbrward and return link

processing. The parameters are displayed in both plain text and graphically. Some of the critical

information contained in these displays include CCSDS data units received, the frame error,
flywheel error, correctable virtual channel data unit, uncorrectable virtual channel data unit,

symbols corrected using Reed-Solomon, command data blocks received, and out of sequence

command data blocks. WWW display of data such as this frees computing resources in the

control room for more critical real-time monitoring.

Automated Multimodal Trend Analysis System (AMTAS)

Prototypes

AMTAS [6] research has led to a number of Perl prototypes that allow experimentation with

univariate and multivariate technologies for detecting trends in data. The univariate techniques

use a "sliding window" (queue) of time series data that represents the current "average" state of
the data and a nominal "model" that represents the expected state of the data. Goodness of fit

tests are used to detect unexpected trends in nominal (chi square test) and ordinal (Kolmogorov-
Smirnov test) data types. Simple standard deviation criteria are used to detect trends in interval

and ratio data. The multivariate techniques use a prediction model that predicts the class of both
nominal and non-nominal data. These multivariate prototypes include Bayesian, Centroid,

Discriminant, and forward-feed neural net models. Data generators were also developed so that

each of these models could be compared using different types of problem data. This eftbrt has

led to some of the recognizer scripts discussed below.

Overview of Perl DataTools

Much has been said about the value of using a toolkit approach to support the maintenance of

software [7]. A good toolkit has a consistent "standard" interlace, is portable, open, flexible,
extensible, and maintainable. Not all toolkits meet these goals but some that come close use a

scripting language to help tie things together. Perl is a scripting language that was designed to tie
things together. As a toolkit itself: Pert meets many of the above goals and is also tree. Perl has a

large support community that includes the Comprehensive Perl Arcl_ve Network (CPAN) that is
a proven reuse resource. In addition to ease of use and maintenance, the main reason to use a

toolkit is to leverage technology in order to create something new. The Perl-based automation

tools presented here were designed to be used as leveraging tools that can be extended and

hopefully evolve into more uset\H and interesting tools. Most of the tools are simple scripts that
can be used together like a language to capture, recognize, and respond to data in an autonomous
way. The goal of this toolkit is to create systems that have little or no interaction with humans--

Ira system still needs a user intert;acc than automation isn't complete!

The internal data tbrmat used by the majority of these tools is a simple tab delmutcdtable, like a

database table with variable names in the first record fi)llowed by data tbr each variable in tile

remaining records in their respective columns. The data is ASCII so that Perl tools like pattern

matching can be used whenever required. The reason for this internal data format will become

obvious when examples of the toolkit are described but also many other database-like tools can

import data in this tbrmat. Any external data that is not in this format, such as binary telemetry

data, must be formated so that it these tools can be used. Once in this format, all of the tools can

be used to process the data down-stream because they all know the "table-speak" internal data

format. Down-stream processing is made easy because most of the tools take their data from

standard input and display to standard output so that data can be piped through a stream of tools

until all the processing required is accomplished.

Perl DataTools may are organized by their general use as follows:

• HTML generators to present data and document applications

• Data generators to generate test data for building recognizers

• Filters to transform and select data

• Description generators to describe the nature of data

• Plotters to display data graphically

• . Movers to put data where it needs to be

• Recognizer technology to classify data so it can be acted upon

• Controllers to respond to recognized conditions

HTML Generators

The HTML generators included here are used to generate hyperlinks to source scripts and data so

that the author may explain how scripts work by giving examples of their use. As a matter of

fact, the best description of these tools is available by going to the WWW site where these tools

are distributed and browsing the HTML. Dbe.pl (Document By Example-- pronounced

"Debbie"), creates soft links in a subdirectory of all the files and then creates HTML anchor

statements that point to these files when mentioned in the original document. For example, a

statement in the original document like "usage: dgen.pl 10 hdata > d_n.out" would create

hyperlinks to dgen.pl, hdata, and dgen.out so that the user could browse the content of these files

in context. Another script called mkdoc.p! is an upper level script that uses dbe.pl to process all

the documents in each subdirectory and create index.html files in each. Additional scripts,

mktbl.pl and mkcbox.pl generate HTML tables and checkbox buttons from data sources.

Data Generators

Data Generators are used to generate data so that classifier models can be built and tested using

simulated data with known characteristics. These scripts are simulator tools that can be used to

generate integer or floating point data with constraints on their range of variation. For example,

to use the script dgen.pl the user specifies tab delimited data names on a line. followed by a tab

delimited list of respective data types, followed by a tab delimited list of ranges:

v 1 v2 v3 v4 v5

n i o i i

13 09 09 09 09

In the second line the n means nominal data, i means interval (or ratio) data, and o means ordinal

data. Thus, data named vl is nominal and it varies randomly from I to 3. When dgen.pl is used,

the user specifics the number of records to be generated and the name of data generation

specification file. The scripts that create a time stamp use the Perl module DateCalc.pm which is
an ISO certified module that takes care of messy things involved when a new date and time must

be calculated from a given date and time and an offset in days, hours, minutes, and seconds.

Table 1 lists the current data generators.

Table 1 -- Data Generators

Script Description
Igen.pl Generate integer data without time stamp

Fgen.pl Generate floating point data without time stamp

Tigen.pl Generate integer data with time stamp

Tfgen.pl Generate floating point data with time stamp

Dgen.pl Generate floating point and integer data without time stamp
Cid.pl Generate integer data with pattern for each classification type

Filters

Filters are used to transtbrm data for easier display and interpretation. For example, script

recode.pl can be used to recode (translate) data values of a variable to YES if the value is 1 and to
NO is the value is 0, otherwise the value can be coded as UNKNOWN. Script compute.pl can be
used to create variables that are based on the values of other variables, such as "v99 = vl*v2 +

v3". Script select.pl can be used to select variables and records from a table of data just like a
database select statement and script kjoin.pl can be used to join tables of data using a key (lst

variable in table). An example of using these tools in combination is as follows:

Compute.pl "v5 = vl *v2 + v3" data > v5.tbl

Join.pl data v5.tbl] select.pl -v "v4 v5 v4 > 0" >v4v5.tbl

These statements create a new variable called v5 that is a combination ofvl, v2, and v3 and then

join this variable with the original table but select only variables v4 and v5 where v4 > 0. Yes,

you can do this with some databases but it is often hard to "script" this action. Also, because Perl
supports regular expression pattern matching you can also do things like:

select.pl "v5 =-/0.0/" v4v5.tbl.

This will return all the records that match the pattern/0.0/. Table 2 lists the current filters.

Table 2 -- Filters

Script Description]

Cdata.pl Categorize all floating point data into at max N bins i
Compute.pl Compute new data from current data 1

_ Delta.pl

Dummy.pl
I

Display difference between each data in current record vs. last record

Break-down all categorical data into dummy variables (0,1 values)

Fy.pl Fisher-Yates shuflle the data

Index.pl Create an index field tbr a table of data
Interp.pl Interpolate time-series data

Join.pl Join2or moretablesrecordbyrespectiverecord
Kjoin.pl Join2 ormoretablcsbyuseof keyfields(relationalDB)
Mc.pl Multicolumndisplayasinglecolumnof data
Mkkb.pl GenerateaPIEKB basedfromdatarangespecification
Nofirst.pl Delete1stfieldin table
Recode.pl Recodedataaccordingtothatdescribedin specificationfile
Ntime.pl Returnnexttimegivenatimeandadurationindayshoursminutesseconds
Sample.pl SamplethedataeveryN records
Select.pl Selectsubsetsof variablesand/orrecordsbasedonselectionrule
Skip.pl SkipN recordsintodata
Smooth.pl SmoothdatausingNpoints
T2s.pl Tabto spacefilter forbetterdisplay
Tstamp.pl Addtimestampto tableof data

Description Generators

Description Generators are report generators that summarize some useful qualities about the data.
Some of the most useful of these are the frequency counter, freq.pl, that counts the frequency of

occurrence of various values of data and xt.pl that cross-tabulates these counts within the

categories indicated by the values of the 1st variable in the table. The script edchk.pl allows the
user to specify regular expressions that represent valid data. When this edit-checking tool is used

it reports the fields and records that do not match the pattern. The script desc.pl generates

descriptive statistics for all the data based on the "type of data" indicated in the data generation

specification file mentioned above. Many of these tools are used to build models that can be used
to identify types or classes of data that require action. Table 3 lists the currert description

generators.

Table 3 -- Description Generators

Script Description

Cor.pl Display correlations among variable in table of data

Desc.pl Display descriptive statistics for all data in table

Edchk.pl Edit check data in table

Freq.pl Display frequency counts tbr data in table

Msig.pl Display means and sigmas of data in table

Norm.pl Normalize data in table

Range.pl Display ranges of data in table

Xt.pl Cross-tabulate 1st variable with remaining variables in table

Plotters

Plotters are used to graphically display data and thus "picture" attributes of the data that would

otherwise be hard to see. The scripts included here are TkPerl-based scripts that allow simple and
convenient plots of data. The data can always be imported into tools like Excel to generate fancy

plots. Table 4 lists the current plotters.

Table 4 -- Plotters

i Scrip t i Description
[Plot.pl ! Display a timeline of data

Cplot.pl] Display a histogram of data i
Mon.pl [Display a real-time timclinc of data ii

Movers

Movers include monitoring tools that grab and move data at critical times. Relmon.pl is a

monitor script that looks {'or a message file that tells it that data is ready to be sent through a
firewall. When the message file arrives, the script moves the data into a file q.leue area along

with info about where to send the data and then acknowledges the receipt of the message. Then

script fileq.pl (also a monitor script) attempts to send the files through the firewall using shell

scripts sendfile and sendfites and keeps trying until successful. The queue of files to be sent

keeps growing as more messages arrive and is finally emptied when the firewall is tip and the
files are successfully transferred to the remote host.

Recognizer Technology

Recognizers are used to identify critical characteristics of data so that appropriate action

can be taken. Some of these tools use the output of the description generators as models

to classify data. Such is the case with chk.pl which uses the output from desc.pl, bcl.pl

which uses the output of xt.pl, and ccl.pl which uses the output ofmsig.pl and norm.pl.

A major advantage of using statistical-based models, such as these, is that much of the

knowledge acquisition phase of building these kinds of recognizers can be automated.

The models are built by simply presenting examples of "good" and "bad" data to the

description generators. This is similar to training a neural net to recognize various types

of data but experience has shown that it is more reliable and much easier to use the

appropriate statistical tool. These types of recognizers lend themselves to applications

that require fuzzy lookup such as case-based reasoning.

Script Pie.pl is a Perl Inference Engine (PIE) [5] that uses a backward-chaining search

strategy and frame-style rule base to recognize classes of data. It is also very easy to

automatically generate a PIE knowledge base that represents limit checking rules to

check the quality of data. (Note that a simple limit checker can also be made using the

select filter with rules that represent limit checks.) However the real power of PIE is its

ability to capture the nature of abstraction hierarchies that represent the nature of

diagnostic spaces such as spacecraft subsystems.

All of these recognizers can be configured so they run as simple stream-based filters or as

real-time socket-based servers under script cs.pl. Cs.pl provides the infrastructure to

connect to a raw data server and serve clients v&o are interested in knowing the state of

the data. It is easy to envision other recognizers that could be built from combinations of

these and filter scripts, for example, a change-of-value recognizer that uses PIE to specify

maximum value changes of data and script delta.pl that displays differences between

current and last values. The set of recognizer technologies presented here is meant to be

a usetid starting point for a more complete set. Table 5 lists the current recognizer

technologies.

8

Table 5 - Recognizer Technology

Script l)escription

Chk.pl Use descriptive statistics information and criteria to check quality of data

Bcl.pl Use Bayesian model to check quality of data

Ccl.pl Use centroid model to check quality of data

Dcl.pl Use discriminant model to check quality of data

Ecl,pl Use edit check patterns to check quail ,ty' of data

Scl.pl Use database style select statement to check quality of data

Pie.pl Use PIE knowledge base to check quality of data

Cs.pl Use above models and serve (via socket connection) result or quality check

Ccs.pl Use simple client to display result from above server

Pieks.pl Use PIE Knowledge Server (PIEKS) to serve clients

Hsmon.pl TkPerl-based health and safety client for PIEKS

Ppie.pl WWW proxy interlace to PIEKS

Controllers

Controllers are scripts that use recognizers to identity critical situations and then take appropriate
action. The simplest of these scripts is ca.pl that loads a condition-action list that contains the

name of the states of critical data conditions paired with the names of scripts to be executed in

response to these conditions. Once the condition-action list is loaded the script connects to a

server to monitor data and responds appropriately. Ape.pl is A Plan Executor (APE) [5] that
continuously monitors via PIEKS while it reactively executes a plan. Pmon.pl is a page monitor

that uses the Perl module Telnet.pm, Kermit, and a serial port on a workstation to connect to a
ROLM phone and send numeric pages to groups of system engineers. Launch.pl is a TkPerl

button interface that allows a user to easily assign labeled buttons to their respective application

components and thereby control their execution. This set of controllers allows a great deal of
flexibility on a continuum from human control to total autonomy. Table 6 lists the current

controllers.

Table 6 - Controllers

I Ca.pl Condition-action script to execute scripts when given conditions are found
Ape.pl A Plan Executor - reactive plan execution while continuously monitoring

Pmon.pl Numeric page - monitor page messages and send then through a serial port

1 Launch.pl Launch applications by pressing buttons on panel

Conclusions

The data movers that send files through a firewall, the controllers that launch applications, and
the numeric paging system that sends pages to system engineers have proven extremely useft, l for

CGRO and are also being used to support the X-ray Timing Explorer, and soon the Advanced

Composition Explorer missions.

Perl modules from CPAN like the DBI for Oracle, DateCalc.pm. Telnet.pm, and GIFgraph.pm
have proven invaluable. An occasional preview of the modules available on CPAN is well worth

any Perl developer's time.

AlthoughthedocumentationtoolsusedbyROBOTTareuseful,theadditionof thedocument-by-
exampletoolwouldmakemaintenanceeasierforboththemaintenancedocumentcreatorandthe
sotiwaremaintenanceengineer.

Therecognizerscriptpie.plandthecontrollerape.plwerecreatedbecausetheysupportthesame
kindsof"expertsystem"stylemonitorandcontrolasGenSAAandGenie(lesstheGUI)but they
do it all in Perl. Usingall Perltoolswouldrestlltinapplicationsthataremucheasierto develop
and maintain. The other recognizerand controllertechnologiesthat supportfuzzy pattern
matchingmaybeusedto supportfuturemissionsthatuseacase-lmsedapproachtoatttomation.

Manyof thescriptsthatautomatetheschedulegenerationweredevelopedadhocandtendtobe
full of the heuristicsrequiredto supportCGRO. This is unfortunatebecausesomeof the
techniquesusedto supportthis taskwouldprobablybeusefultoothermissions.Theauthorsare
of theopinionthatif thesescriptswerewrittenwithsomeof thetoolsavailableinPerlDataTools
thatthescriptswouldbefareasierto maintainandperhapsbemademoreconfigurablefor other
missions.

Partsof PerlDataToolshavebeeninusefor anumberof yearsandhaveproventheirusefulness
andeaseof maintenance.Forexample,aCGROsoftwareengineersaidthatit waseasy'to create
a versionof thelaunchtool thatkeepstrackof thestateof ROBOTTandindicatesthisby label
andcolorchangesin thebuttons.Thisis thekindof usethatisaprimary,goalof PerlDataTools
- Presenta setof toolsthatcaneasilybeunderstoodandextendedto suit newapplications.
Becausemostof thesetoolshaveevolvedfromideasthatresultedfromthehands-onexperience
supportingrealmissionstheyshouldbeof greatpracticalvalueto othermissionsaswell.

Acknowledgements

Theauthorswishto thankJulieBreed,BarbieBrown,Bill Stoffel,andGaryAlcott (EDOS)for
theirsupportof thiseffort.

References

1. Stoffel,W., and McLean,D., "Tools for AutomatingSpacecraftGroundSystems:The
IntelligentCommandand Control (ICC) Approach,"Proceedingsof the SpaceOps96,
MunichGermany,1996.

2. McLean,D.,Zhang,Y., andFatig,M., "AutomatingtheComptonGammaRayObservatory
GroundSystem:ExpertSystemand WWW Technologies,"Proceedingsof the World
CongressonExpertSystems,MexicoCity,Mexico,January,1998.

3. Hughes,P.M.,andLuczak,E.C.,"GenSAA:A Tool For AdvancingSatelliteMonitoring
With GraphicalExpertSystems,"Proceedingsof theSecondInternationalSymposiumon
GroundDataSystemsfor SpacecraftControl,Pasadena,California,November1992.

4. User'sGuide for the GenericInferentialExecutor(Genie)PassScript Builder,GSFC,
GreenbeltMaryland,Release1,March1996.

5. McLean,D., "A KnowledgeServerToolkit:Perl-basedAutomationTools,"Proceedingsof
the 13thAnnualAIAA/USU Conferenceon SmallSatellites,NorthLogan,Utah,August
1999.

6. ChariyaPeterson,Karl Mueller,and Nigel A. Ziyad, "AutomatedTrend Analysis for
SpacecraftSystem",AAAI SpringSymposium,Stanford,CA ,March21-23,1999.

7. McLean,D.R., "Maintainingan ExpertPlanningSystem:A Sot'twareToolsApproach,"
InstitutionalizingExpertSystems:A ShortHandbookfor Managers,JayLiebowitz(Ed.),
PrinticeHall, 199l.

10

